Effective potential for the massless KPZ equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of the Kpz Equation

We generalize the KPZ equation to an O(3) N = 2j + 1 component model. In the limit N → ∞ we show that the mode coupling equations become exact. Solving these approximately we find that the dynamic exponent z increases from 3/2 for d = 1 to 2 at the dimension d ≈ 3.6. For d = 1 it can be shown analytically that z = 3/2 for all j. The case j = 2 for d = 2 is investigated by numerical integration ...

متن کامل

Weakly asymmetric bridges and the KPZ equation

We consider a discrete bridge from (0, 0) to (2N, 0) evolving according to the corner growth dynamics, where the jump rates are subject to an upward asymmetry of order N with α > 0. We provide a classification of the static and dynamic behaviour of this model according to the value of the parameter α. Our main results concern the hydrodynamic limit and the fluctuations of the bridge. For α < 1,...

متن کامل

Towards a strong coupling theory for the KPZ equation

After a brief introduction we review the nonperturbative weak noise approach to the KPZ equation in one dimension. We argue that the strong coupling aspects of the KPZ equation are related to the existence of localized propagating domain walls or solitons representing the growth modes; the statistical weight of the excitations is governed by a dynamical action representing the generalization of...

متن کامل

KPZ Equation and Surface Growth Model

We consider the ultra-discrete Burgers equation. All variables of the equation are discrete. We classify the equation into five regions in the parameter space. We discuss behavior of solutions. Using this equation we construct the deterministic surface growth models respectively. Furthermore we introduce noise into the ultra-discrete Burgers equation. We present the automata models of the KPZ e...

متن کامل

On the Perturbation Expansion of the KPZ- Equation

Thanks to a fluctuation dissipation theorem and the mapping to exactly solvable models, much is known for space-dimension d = 1 [1, 2, 3]. In contrast, the case of d ≥ 2 can only be attacked by approximative methods or field-theoretic perturbative expansions. Using the latter, the fixed point structure of the renormalization group flow for d = 2 + ε has been obtained [1, 4, 5]. Two domains can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica A: Statistical Mechanics and its Applications

سال: 2000

ISSN: 0378-4371

DOI: 10.1016/s0378-4371(99)00611-1